Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
نویسندگان
چکیده
We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.
منابع مشابه
Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries
Exploring high performance and environment-friendly electrode materials is highly desirable for the sustainable Li-ion batteries (LIBs) system. In this study, a facile approach of the modified Hummers’ method combining with special thermal reduction was proposed to synthesize nanostructured reduced graphene oxide (RGO) with abundant oxygen-containing functional groups. The resultant RGO showed ...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کاملSynthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries
Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. Durin...
متن کاملLow temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage.
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomp...
متن کاملGrowth of Ultrathin ZnCo2O4 Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties
The growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide (denoted as rGO/ZnCo2O4) via a facile low-temperature solution method combined with a subsequent annealing treatment is reported. With the assistance of citrate, interconnected ZnCo2O4 nanosheets can assemble into hierarchically porous overlays on both sides of rGO sheets. Such a hybrid nanostructure would effectively faciliat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2011